Impact of global genome repair versus transcription-coupled repair on ultraviolet carcinogenesis in hairless mice.

نویسندگان

  • R J Berg
  • H Rebel
  • G T van der Horst
  • H J van Kranen
  • L H Mullenders
  • W A van Vloten
  • F R de Gruijl
چکیده

The nucleotide excision repair (NER) system is comprised of two subpathways, i.e., transcription-coupled repair (TCR) and global genome repair (GGR). To establish the relative importance of TCR and GGR for UV effects on the skin, we have used hairless knockout mouse strain lacking either TCR (CSB -/-) or GGR (XPC -/-). In single exposure experiments, we found that CSB -/- mice have a 7-16 times higher susceptibility to sunburn than XPC -/- mice and than heterozygous (+/-) and wild-type (+/+) controls. Exposure to 80 J/m2 UV radiation (i.e., suberythemogenic in CSB -/-) on 10 consecutive days gives rise to epidermal hyperplasia in CSB -/- and XPC -/-, whereas repair-proficient controls do not show epidermal hyperplasia from these exposures. In addition, CSB -/- mice develop marked parakeratosis, whereas XPC -/- mice and controls do not. Under continued exposure to this daily dose, squamous cell carcinomas appear in CSB -/-, XPC -/-, and in the control groups, whereas only in the CSB -/- animals is a fairly high number of benign papillomas also found. The median latency time of squamous cell carcinomas (diameters > or = 1 mm) is 84 days for the XPC -/- mice, 115 days for the CSB -/- mice, and 234-238 days for the heterozygous and wild-type control groups. These results indicate that GGR is more important than TCR in protection against UV-induced carcinomas of the skin but not against other UV effects such as sunburn, epidermal thickening, scaling of the stratum corneum, and development of papillomas. These results also indicate that GGR capacity may serve as a better predictor for skin cancer susceptibility than sensitivity to sunburn. The relative cancer susceptibilities of GGR- and TCR-deficient skin could well depend on the balance between an increased mutation rate and the presence (in CSB -/-) or lack (in XPC -/-) of a compensatory apoptotic response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of transcription-coupled repair but not global genome repair with ultraviolet-B-induced Langerhans cell depletion and local immunosuppression.

Exposure to ultraviolet-B radiation impairs cellular immune responses. This immunosuppression seems to be associated with Langerhans cell migration. DNA damage appears to play a key role because enhanced nucleotide excision repair, a pathway essential for elimination of ultraviolet-B-induced DNA lesions, strongly counteracts immunosuppression. To determine the effect of DNA repair on ultraviole...

متن کامل

Defective Transcription-Coupled Repair in Cockayne Syndrome B Mice Is Associated with Skin Cancer Predisposition

A mouse model for the nucleotide excision repair disorder Cockayne syndrome (CS) was generated by mimicking a truncation in the CSB(ERCC6) gene of a CS-B patient. CSB-deficient mice exhibit all of the CS repair characteristics: ultraviolet (UV) sensitivity, inactivation of transcription-coupled repair, unaffected global genome repair, and inability to resume RNA synthesis after UV exposure. Oth...

متن کامل

Potential roles for p53 in nucleotide excision repair.

Ultraviolet (UV) light-induced DNA damage is repaired by the nucleotide excision repair pathway, which can be subdivided into transcription-coupled repair (TCR) and global genome repair (GGR). Treatment of cells with a priming dose of UV light appears to stimulate both GGR and TCR, suggesting that these processes are inducible. GGR appears to be disrupted in p53-deficient fibroblasts, whereas t...

متن کامل

Reduced global genomic repair of ultraviolet light-induced cyclobutane pyrimidine dimers in simian virus 40-transformed human cells.

The p53 tumor-suppressor gene has been implicated in the inducible activation of excision repair of ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs) in human cells. Because the large T antigen (LTAg) of the simian virus 40 (SV40) binds p53 protein and can interfere with its function, it was of interest to study DNA repair in normal human fibroblasts that had been transformed by SV4...

متن کامل

Human cells compromised for p53 function exhibit defective global and transcription-coupled nucleotide excision repair, whereas cells compromised for pRb function are defective only in global repair.

After exposure to DNA-damaging agents, the p53 tumor suppressor protects against neoplastic transformation by inducing growth arrest and apoptosis. A series of investigations has also demonstrated that, in UV-exposed cells, p53 regulates the removal of DNA photoproducts from the genome overall (global nucleotide excision repair), but does not participate in an overlapping pathway that removes d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 60 11  شماره 

صفحات  -

تاریخ انتشار 2000